Package: stacking 0.1.3
stacking: Building Predictive Models with Stacking
Building predictive models with stacking which is a type of ensemble learning. Learners can be specified from those implemented in 'caret'. For more information of the package, see Nukui and Onogi (2023) <doi:10.1101/2023.06.06.543970>. Packages caret, parallel, snow, and packages for base and meta learners should be installed.
Authors:
stacking_0.1.3.tar.gz
stacking_0.1.3.zip(r-4.5)stacking_0.1.3.zip(r-4.4)stacking_0.1.3.zip(r-4.3)
stacking_0.1.3.tgz(r-4.4-any)stacking_0.1.3.tgz(r-4.3-any)
stacking_0.1.3.tar.gz(r-4.5-noble)stacking_0.1.3.tar.gz(r-4.4-noble)
stacking_0.1.3.tgz(r-4.4-emscripten)stacking_0.1.3.tgz(r-4.3-emscripten)
stacking.pdf |stacking.html✨
stacking/json (API)
# Install 'stacking' in R: |
install.packages('stacking', repos = c('https://onogi.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/onogi/stacking/issues
Last updated 2 months agofrom:6c59c508b3. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 10 2024 |
R-4.5-win | OK | Nov 10 2024 |
R-4.5-linux | OK | Nov 10 2024 |
R-4.4-win | OK | Nov 10 2024 |
R-4.4-mac | OK | Nov 10 2024 |
R-4.3-win | OK | Nov 10 2024 |
R-4.3-mac | OK | Nov 10 2024 |
Exports:stacking_predictstacking_traintrain_basemodeltrain_basemodel_coretrain_metamodel
Dependencies:caretclasscliclockcodetoolscolorspacecpp11data.tablediagramdigestdplyre1071fansifarverforeachfuturefuture.applygenericsggplot2globalsgluegowergtablehardhatipredisobanditeratorsKernSmoothlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrproxypurrrR6RColorBrewerRcpprecipesreshape2rlangrpartscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Predict for new data | stacking_predict |
Training base and meta models | stacking_train |
Training base models | train_basemodel |
Internal function called by train_basemodel | train_basemodel_core |
Training a meta model based on base models | train_metamodel |